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Abstract The inward rectifier K? channel Kir2.1 con-

tributes to the maintenance of the resting cell membrane

potential in excitable cells. Loss of function mutations of

KCNJ2 encoding Kir2.1 result in Andersen-Tawil syn-

drome, a disorder characterized by periodic paralysis,

cardiac arrhythmia, and dysmorphic features. The ubiqui-

tously expressed protein kinase B (PKB/Akt) activates the

phosphatidylinositol-3-phosphate-5-kinase PIKfyve, which

in turn regulates a variety of carriers and channels. The

present study explored whether PKB/PIKfve contributes to

the regulation of Kir2.1. To this end, cRNA encoding

Kir2.1 was injected into Xenopus oocytes with and without

additional injection of cRNA encoding wild type PKB

(PKB), constitutively active T308D,S473DPKB or inactive
T308A,S473APKB. Kir2.1 activity was determined by two-

electrode voltage-clamp. As a result, PKB and
T308D,S473DPKB, but not T308A,S473APKB, significantly

increased Kir2.1-mediated currents. The effect of PKB was

mimicked by coexpression of PIKfyve but not of
S318APikfyve lacking the PKB phosphorylation site. The

decay of Kir2.1-mediated currents after inhibition of

channel insertion into the cell membrane by brefeldin A

(5 lM) was similar in oocytes expressing Kir2.1 ? PKB or

Kir2.1 ? PIKfyve to those expressing Kir2.1 alone, sug-

gesting that PKB and PIKfyve influence channel insertion

into rather than channel retrieval from the cell membrane.

In conclusion, PKB and PIKfyve are novel regulators of

Kir2.1.
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Introduction

Inwardly rectifying K? channels of the Kir2 (KCNJ, IRK)

subfamily participate in the maintenance of the resting

membrane potential in cardiac myocytes, skeletal muscle,

and neurons (Hibino et al. 2010; Lopatin and Nichols

2001). In cardiomyocytes Kir2.1 accounts for the inwardly

rectifying K? current IK1 (Liu et al. 2001a; Preisig-Müller

et al. 2002; Tristani-Firouzi and Etheridge 2010). Gain-of-

function mutations of Kir2.1 result in atrial fibrillation

(Preisig-Müller et al. 2002; Xia et al. 2005). Loss-of-

function mutations of Kir2.1 underlie Andersen-Tawil

syndrome (ATS), a rare familial disorder characterized by

potassium-sensitive periodic paralysis, ventricular

arrhythmias and dysmorphic features including syndactyly

and altered face shapes (Andersen et al. 1971; Plaster et al.

2001; Sansone et al. 1997; Tawil et al. 1994). Kir2 chan-

nels are regulated by mitochondria (Collins and Larson

2002; Lodge and Normandin 1997) and contribute to

ischemic preconditioning (Diaz et al. 2004). Kir2.1 is

regulated by arachidonic acid (Liu et al. 2001b), choles-

terol (Romanenko et al. 2004), PKC (Zitron et al. 2004),

tyrosine phosphorylation (Henry et al. 1996; Wischmeyer

et al. 1998), AKAP79 (Dart and Leyland 2001), Rho (Jones

2003), TNF-a (Vicente et al. 2004), Chapsyn 110 (Leyland
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and Dart 2004), filamin-A (Sampson et al. 2003), PSD95

(Nehring et al. 2000), SAP97, CASK, Veli, and Mint1

(Leonoudakis et al. 2004).

Kir2.1 channels are further regulated by phosphatidyl-

inositol 4,5-bisphosphate PI(4,5)P2 (Donaldson et al. 2003;

Rohács et al. 1999; Soom et al. 2001; Xiao et al. 2003).

The related phosphatidylinositol 3,5-bisphosphate

(PI(3,5)P2) is generated by the mammalian phosphatidyli-

nositol-3-phosphate-5-kinase PIKfyve (Hill et al. 2010;

Ikonomov et al. 2002; Sbrissa et al. 1999, 2002, 2004).

PIKfyve has been shown to regulate endosomal transport

(Hill et al. 2010; Ikonomov et al. 2001, 2003, 2006; Rusten

et al. 2006; Rutherford et al. 2006). As a result, PIKfyve

has been shown to play a critical role in the regulation of

the glucose carrier GLUT4 (Berwick et al. 2004; Watson

and Pessin 2006; Welsh et al. 2005), the Na?, glucose

cotransporter SGLT1 (Shojaiefard et al. 2007), the creatine

transporter CreaT (Strutz-Seebohm et al. 2007), glutamate

transporters (Alesutan et al. 2010; Gehring et al. 2009b),

Cl- channels (Gehring et al. 2009a; Klaus et al. 2009),

Ca2? channels (Sopjani et al. 2010; Tsuruta et al. 2009) and

the K? channel KCNQ1/KCNE1 (Seebohm et al. 2007).

PIKfyve is phosphorylated and thus activated by protein

kinase B (PKB/Akt), which is well known to regulate

glucose carriers through activation of PIKfyve (Hill et al.

2010).

The present study explored the regulation of Kir2.1 by

PIKfyve and PKB. To this end, cRNA encoding Kir2.1

was injected into Xenopus oocytes either without or with

additional injection of cRNA encoding wild type or

mutated PIKfyve and/or PKB. Channel activity was sub-

sequently determined by the dual electrode voltage

clamp.

Methods

Constructs

For generation of cRNA (Dërmaku-Sopjani et al. 2011) con-

structs were used encoding wild type human Kir2.1 (Ureche

et al. 2008), wild type PIKfyve, mutated S318APIKfyve lacking

the PKB phosphorylation consensus sequence (Berwick et al.

2004; Seebohm et al. 2007), wild type PKB, constitutively

active T308D,S473DPKB, single mutants T308APKB or S473APKB

and inactive T308A,S473APKB (Klaus et al. 2008). The con-

structs were used for the generation of cRNA as described

previously (Mohamed et al. 2010; Strutz-Seebohm et al.

2011). PKB cDNA was kindly provided by Sir Philip Cohen,

College of Life Sciences and Sir James Black Centre,

University of Dundee; the PIKfyve cDNA by Jeremy

M. Tavaré, University of Bristol.

Voltage Clamp in Xenopus Oocytes

Xenopus oocytes were prepared as previously described

(Böhmer et al. 2010; Rexhepaj et al. 2010). cRNA

encoding Kir2.1 (10 ng) was injected with or without

additional injection of 10 ng cRNA encoding wild type or

mutated PKB and/or Pikfyve on the day of preparation of

the Xenopus oocytes. All experiments were performed at

room temperature 3 days after injection. In two-electrode

voltage-clamp experiments Kir2.1 channel currents were

elicited every 20 s with 1 s pulses from -150 mV to

?30 mV applied from a holding potential of -60 mV.

Pulses were applied in 10 mV increments. The oocytes

were maintained at 17 �C in a solution containing 88.5 mM

NaCl, 2 mM KCl, 1.8 mM CaC12, 1 mM MgC12, 5 mM

HEPES, 0.11 mM tetracycline, 4 lM ciprofloxacin,

0.22 mM gentamycin (Refobacin), 0.5 mM of the oocyte

maturation inhibitor theophylline (Euphylong) (Bravo et al.

1978; O’Connor and Smith 1976), as well as 5 mM sodium

pyruvate. The pH was adjusted to 7.4 by addition of NaOH.

Brefeldin A was used to discriminate between enhanced

insertion of Kir2.1 into the cell membrane and delayed

retrieval of Kir2.1 from the cell membrane. Brefeldin A

inhibits the trans-Golgi network (TGN) thereby preventing

the insertion of newly synthesized channel proteins into the

membrane (Kirkbride et al. 2012; Klausner et al. 1992). In

detail, cRNA encoding Kir2.1 and PKB were injected on

the day of preparation of the oocytes. Brefeldin A (5 lM,

Sigma, Schnelldorf, Germany) was added to the culture

medium 24 h later (for a total 48 h incubation with bre-

feldin A) or 48 h later (for a total 24 h incubation with

brefeldin A), All electrophysiological recordings were

performed 72 h after the cRNA injection. Control super-

fusate was composed of 88 mM NaCl, 10 mM KCl,

1.8 mM CaCl2, 1 mM MgCl2, and 5 mM HEPES, titrated

Fig. 1 Coexpression of wild type PKB or of wild type PIKfyve

increased the inwardly rectifying current in Kir2.1-expressing

Xenopus oocytes. A Original tracings illustrating currents determined

in Xenopus oocytes injected with water (a), or expressing Kir2.1

without (b) or with wild type PKB (c). B Arithmetic means ± SEM

(n = 10–19) of the current as a function of voltage in Xenopus
oocytes injected with water (triangles) or expressing Kir2.1 without

(circles) or with additional expression of PKB (squares). C Arithmetic

means ± SEM (n = 10–19) of the normalized current at -150 mV

in Xenopus oocytes injected with water (first bar) or expressing

Kir2.1 without (second bar) or with (third bar) additional expression

of PKB. ***indicates statistically significant (p \ 0.001) difference

from oocytes expressing Kir2.1 alone. D Original tracings illustrating

currents determined in Xenopus oocytes injected with water (a), or

expressing Kir2.1 without (b) or with PIKfyve (c). E Arithmetic

means ± SEM (n = 10–27) of the current as a function of voltage in

Xenopus oocytes injected with water (triangles) or expressing Kir2.1

without (circles) or with additional expression of PIKfyve (squares).

F Arithmetic means ± SEM (n = 10–27) of the normalized current

at -150 mV in Xenopus oocytes injected with water (first bar) or

expressing Kir2.1 without (second bar) or with (third bar) additional

expression of PIKfyve. ***indicates statistically significant

(p \ 0.001) difference from oocytes expressing Kir2.1 alone

b
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to pH 7.4 by NaOH. The data were filtered at 1 kHz and

recorded with Digidata 1322A A/D-D/A converter and

Clampex V.4.2 software for data acquisition and analysis

(Axon Instruments, Union City, CA, USA) (Eckey et al.

2010). The analysis of the data was performed with

Clampfit 9.2 (Axon Instruments) software (Hosseinzadeh

et al. 2011).

Statistical Analysis

Data are provided as means ± SEM; n represents the

number of oocytes. All oocyte experiments were repeated

with at least 3 batches; in all repetitions qualitatively

similar data were obtained. Data were tested for signifi-

cance using ANOVA, and results with p \ 0.05 were

considered statistically significant.

Results

To possibly uncover an effect of protein kinase B (PKB) on

Kir2.1, cRNA encoding Kir2.1 was injected with or without

cRNA encoding PKB into Xenopus oocytes. As a result, an

inwardly rectifying current (IKir) was observed in Kir2.1-

expressing, but not in water-injected Xenopus oocytes

(Fig. 1). Coexpression of PKB was followed by a signifi-

cant increase in IKir (Fig. 1A–C). Similarly, coexpression of

Pikfyve significantly enhanced IKir (Fig. 1D–F).

The effect of wild type PKB was mimicked by consti-

tutively active T308D,S473DPKB but not by the catalytically

inactive mutant T308A,S473APKB (Fig. 2). Coexpression of

the T308APKB mutant, but not of the S473APKB mutant

resulted in a significant increase in IKir (Fig. 2). Accord-

ingly, the phosphorylation at S473 was critically important

for the effect of PKB on Kir2.1 whereas the phosphoryla-

tion at T308 appeared to be dispensable.

A further series of experiments explored whether the

effect of PKB involved phosphatidylinositol-3-phosphate-

5-kinase (PIKfyve). Again, IKir was significantly higher in

Xenopus oocytes coexpressing PKB than in Xenopus

oocytes expressing Kir2.1 alone (Fig. 3). Importantly, the

additional coexpression of PIKfyve, but not of S31PIKfyve

lacking the PKB phosphorylation site led to a further sig-

nificant increase in IKir (Fig. 3).

Stimulation of Kir2.1 by PKB or PIKfyve could have

resulted from accelerated insertion of channel protein into

the cell membrane or delayed retrieval of channel protein

from the cell membrane. To discriminate between those two

possibilities, voltage clamp experiments were performed in

the absence and presence of brefeldin A (5 lM), an inhibitor

of protein insertion into the cell membrane. As shown in

Fig. 4, brefeldin A treatment was followed by a decay of the

current in Xenopus oocytes expressing Kir2.1 with PKB

(Fig. 4A) or PIKfyve (Fig. 4B) which was similar to the

decay of the current in oocytes expressing Kir2.1 alone. This

observation indicates that PKB is not primarily effective by

delaying channel retrieval from the cell membrane.

Discussion

The present observations demonstrate that protein kinase B

(PKB) up-regulates the inwardly rectifying current gener-

ated by the K? channel Kir2.1. PKB is activated by a

signaling involving phosphoinositide-3-kinase (PI3 K) and
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active T308D,S473DPKB but not by inactive T308A,S473APKB. Arithmetic

means ± SEM (n = 14–22) of the normalized current at -150 mV in

Xenopus oocytes injected with water (first bar), or expressing Kir2.1

without (second bar), or with wild type PKB (third bar), with inactive
T308A,S473APKB (fourth bar), with the single mutants S473APKB (fifth
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alone. # indicates statistically significant (p \ 0.05) difference from

coexpression of Kir2.1 together with wild type PKB
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phosphoinositide dependent kinase (PDK1). Apparently,

the signaling leading to PKB activation is active in oocytes,

as expression of wild type PKB is effective without exog-

enous stimulation of the PI3 K pathway. PKB is in turn

known to phosphorylate PIKfyve (Hill et al. 2010) and thus

to regulate PIKfyve-sensitive carriers and ion channels

(Alesutan et al. 2010; Gehring et al. 2009a, 2009b; Hill et al.

2010; Klaus et al. 2009; Shojaiefard et al. 2007; Sopjani

et al. 2010; Strutz-Seebohm et al. 2007; Tsuruta et al. 2009).

Our observations suggest that PIKfyve stimulates the Kir2.1

channel protein insertion into the cell membrane. The bre-

feldin A experiments suggest that PKB and PIKfyve do not

interfere with the clearance of channel protein from the cell

membrane. The enhanced protein abundance in the cell

membrane is thus presumably due to accelerated insertion

of channel protein into the cell membrane. PIKfyve is

known to phosphorylate phosphatidylinositol-3-phosphate

(PtdIns3P) resulting in the formation of phosphatidylino-

sitol 3,5-bisphosphate (PtdIns(3,5)P2) (Sbrissa et al. 1999).

Phosphatidylinositides participate in the regulation of

membrane trafficking (de Lartigue et al. 2009; Ikonomov

et al. 2009; Morris and Smyth 2007; Zheng and Bobich

2004). The present observations do, however, not rule out

additional mechanisms involved in the stimulating effect of

PKB on Kir2.1, such as direct phosphorylation of the

channel protein or phosphorylation of other signaling

molecules governing Kir2.1 activity.

An up-regulation of Kir2.1 channels is expected to

hyperpolarize the cell membrane. In excitable cells, the

stimulation of Kir2.1 thus counteracts depolarization and

fosters repolarization. Because of its inwardly rectifying

property, Kir2.1 is particularly important for the most ter-

minal phase of repolarization in cardiomyocytes and is the

dominating conductance maintaining the resting cell

membrane potential (Tristani-Firouzi and Etheridge 2010).

Loss of function mutations of Kir2.1 bear the risk of

ventricular arrhythmias (Tristani-Firouzi and Etheridge

2010). Kir2.1 deficiency further impairs repolarization of

skeletal muscle cells leading to potassium-sensitive peri-

odic paralysis (Andersen et al. 1971; Plaster et al. 2001;

Sansone et al. 1997; Tawil et al. 1994).

In epithelial cells inwardly rectifying K? channels

maintain the electrical driving force for electrogenic

transport systems. Accordingly, stimulation of the K?

channels augments Na?-coupled transport of glucose

(Dieter et al. 2004), amino acids (Boehmer et al. 2005,

2006; Böhmer et al. 2010; Palmada et al. 2005), creatine

(Shojaiefard et al. 2005; Strutz-Seebohm et al. 2007),

organic osmolytes (Klaus et al. 2008), and phosphate

(Bhandaru et al. 2011). In proximal renal tubules activation

of Kir2.1 and subsequent hyperpolarization further

increases the electrical driving force for electrogenic

HCO3
- exit across the basolateral cell membrane leading

to cytosolic acidification and subsequent stimulation of the

apical Na?/H? exchanger (Lang and Rehwald 1992).

Accordingly, enhanced Kir2.1 activity increases Na? entry

and thus increases the demand for Na? extrusion through

the Na?/K? ATPase (Lang and Rehwald 1992).

In any cell type stimulation of K? channels results in K?

exit, which may, during energy depletion and thus impaired

function of Na?/K? ATPase, lead to significant cellular K?

loss, and cellular K? depletion, which in turn stimulates

suicidal cell death (Becker et al. 2007; Bortner and

Cidlowski 2004; Föller et al. 2006; Schneider et al. 2007;

Shimizu et al. 2006). The hyperpolarization further drives

Cl- exit across the cell membrane, which leads to cellular

loss of KCl and osmotically obliged water thus leading to

cell shrinkage (Lang et al. 1986, 1998).

The HCO3
- exit after hyperpolarization favors the

development of cytosolic acidification, which has been

shown to accelerate suicidal cell death (Lupescu et al.

2009) and to impair glycolysis (Boiteux and Hess 1981).
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Fig. 3 Effect of wild type PKB

was mimicked by PIKfyve.

Arithmetic means ± SEM

(n = 14–20) of the normalized

current at -150 mV in Xenopus
oocytes injected with water

(first bar), or expressing Kir2.1

without (second bar) or with

wild type PKB either without

(third bar) or with additional

coexpression of wild type

PIKfyve (fourth bar) or of

PKB-resistant S318APIKfyve

(fifth bar). ##indicates

statistically significant

difference (p \ 0.01) from

coexpression of PKB alone, ***

indicates statistically significant

difference (p \ 0.001) from the

expression of Kir2.1 alone
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In conclusion, the present observations show that PKB

in conjunction with PIKfyve activates Kir2.1 channels.

This process is expected to impact on the excitability of

excitable cells, on transport across epithelial cells as well

as on cell volume and survival of a wide variety of cells.
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DS, Föller M, Lang F (2010) Stimulation of electrogenic glucose

transport by glycogen synthase kinase 3. Cell Physiol Biochem

26:641–646
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